Universitat de BarcelonaMolecular Physiology Laboratory

kv1.5Department of Biochemistry and Molecular Biology
University of Barcelona


Members                                Research interest
Selected Publications               Collaborations
Group's Photo




 


Senior Members

Antonio Felipe Campo , PhD, Associate Professor
Núria Comes, PhD, Research Assistant Professor

 

PhD Students and Fellows

Laura Solé Codina

Mireia Pérez Verdaguer

Anna Oliveras Martínez

Albert Vallejo Gracia

Sara Roig Merino

Antonio Serrano Albarrás

Sara Rolle Sóñora

 

Former graduate students

Mireia Coma Camprodón
Rinat Dahan
Gemma Fuster Orellana
Maribel Grande Robles
Meritxell Roura Ferrer

Irini Tsevi
Rubén Vicente García

Núria Villalonga Barceló
Ramón Martínez Mármol

Joanna Bielanska



 

Research interest
 

    The Molecular Physiology laboratory is interested on the molecular identification and physiological role of  Na and K ionic channels from immune system cells, and its regulation in the cardiovascular and nervous system. Ionic channels are the membrane proteins responsible of the action potential regulation and to keep the membrane potential by passing ions through the lipid structure of plasma membrane. Their activity is very important in synaptic transmission and in the electric waves in the brain. They also play a key role in the cardiac action potential. Whereas the physiological role of ionic channels in tissues having electric properties is quite clear, their role in non-electrically cell types is uncertain. Thus, it has been suggested that ionic channels play an important role in the insulin release from b-pancreatic cells. In kidney are related to ionic reabsortion  and cell volume control during filtering. In uterus, where ionic channels are almost undetectable in basal conditions, are highly induced  the last hours of pregnancy. This fact could be related to the uterine contractions during delivery. In the immune system cells, it is known the existence of Na and K ionic currents however, few proteins have been identified and almost nothing is known about their physiological role. Few studies show that ionic channel activity could be related to nitric oxide production and TNF -α release. These results 
suggest that ionic channels play an important role in the immunological response to external injuries (viral or bacterial infections) or autoimmune diseases. In the striated muscle, ion channels play a key role in cellular differentiation and proliferation. Our interest is to study the role of voltage-dependent ion channels during cell cycle progression and  G0 withdraw. This process leads to myotube fusion by means of membrane hyperpolarization.  The knowledge of the responsible fusion mechanisms between myoblasts and myoubes is important for the treatment based in regeneration and gene therapies in muscle disorders.

 


Selected Publications:
 

Kv1.5 in the immune system: the good, the bad, or the ugly? Felipe A, Soler C, Comes N. Front Physiol. 2010; 1:152.

 

Impact of KCNE subunits on KCNQ1 (Kv7.1) channel membrane surface targeting. Roura-Ferrer M, Solé L, Oliveras A, Dahan R, Bielanska J, Villarroel A, Comes N, Felipe A. J Cell Physiol. 2010; 225(3):692-700.

 

Immunomodulatory effects of diclofenac in leukocytes through the targeting of Kv1.3 voltage-dependent potassium channels. Villalonga N, David M, Bielańska J, González T, Parra D, Soler C, Comes N, Valenzuela C, Felipe A. Biochem Pharmacol. 2010; 80(6):858-66.

 

Does a physiological role for KCNE subunits exist in the immune system? Solé L, Felipe A. Commun Integr Biol. 2010; 3(2):166-8.

 

Immunomodulation of voltage-dependent K+ channels in macrophages: molecular and biophysical consequences. Villalonga N, David M, Bielanska J, Vicente R, Comes N, Valenzuela C, Felipe A. J Gen Physiol. 2010; 135(2):135-47.

 

Voltage-dependent potassium channels Kv1.3 and Kv1.5 in human fetus. Bielanska J, Hernández-Losa J, Moline T, Somoza R, Ramón y Cajal S, Condom E, Ferreres JC, Felipe A. Cell Physiol Biochem. 2010; 26(2):219-26.

 

Voltage-dependent potassium channels Kv1.3 and Kv1.5 in human cancer. Bielanska J, Hernández-Losa J, Pérez-Verdaguer M, Moline T, Somoza R, Ramón Y Cajal S, Condom E, Ferreres JC, Felipe A. Curr Cancer Drug Targets. 2009; 9(8):904-14.

 

KCNE4 suppresses Kv1.3 currents by modulating trafficking, surface expression and channel gating. Solé L, Roura-Ferrer M, Pérez-Verdaguer M, Oliveras A, Calvo M, Fernández-Fernández JM, Felipe A. J Cell Sci. 2009; 122(Pt 20):3738-48.

 

Developmental switch of the expression of ion channels in human dendritic cells. Zsiros E, Kis-Toth K, Hajdu P, Gaspar R, Bielanska J, Felipe A, Rajnavolgyi E, Panyi G. J Immunol. 2009; 183(7):4483-92.

 

Functional implications of KCNE subunit expression for the Kv7.5 (KCNQ5) channel. Roura-Ferrer M, Etxebarria A, Solé L, Oliveras A, Comes N, Villarroel A, Felipe A. Cell Physiol Biochem. 2009; 24(5-6):325-34.

 

Multiple Kv1.5 targeting to membrane surface microdomains. Martínez-Mármol R, Villalonga N, Solé L, Vicente R, Tamkun MM, Soler C, Felipe A. J. Cell Physiol. 2008; 217(3):667-73.

 

Targeting potassium channels: new advances in cardiovascular therapy. Martínez-Mármol R, Roura-Ferrer M, Felipe A. Recent Pat Cardiovasc Drug Discov. 2008; 3(2):105-18.

 

Skeletal muscle Kv7 (KCNQ) channels in myoblast differentiation and proliferation. Roura-Ferrer M, Solé L, Martínez-Mármol R, Villalonga N, Felipe A. Biochem Biophys Res Commun. 2008; 369(4):1094-7.

 

Cell cycle-dependent expression of Kv1.5 is involved in myoblast proliferation. Villalonga N, Martínez-Mármol R, Roura-Ferrer M, David M, Valenzuela C, Soler C, Felipe A. Biochim Biophys Acta. 2008;1783(5):728-36.

 

Differential regulation of Navß subunits during myogenesis. David M, Martínez-Mármol R, Gonzalez T, Felipe A, Valenzuela C. Biochem Biophys Res Commun. 2008; 368(3):761-6.

 

Kv1.5 association modifies Kv1.3 traffic and membrane localization. Vicente R, Villalonga N, Calvo M, Escalada A, Solsona C, Soler C, Tamkun MM, Felipe A. J Biol Chem. 2008; 283(13):8756-64.

 

Voltage-dependent Na+ channel phenotype changes in myoblasts. Consequences for cardiac repair. Martínez-Mármol R, David M, Sanches R, Roura-Ferrer M, Villalonga N, Sorianello E, Webb SM, Zorzano A, Gumà A, Valenzuela C, Felipe A. Cardiovasc Res. 2007; 76(3):430-41.

 

Potassium channels are a new target field in anticancer drug design. Villalonga N, Ferreres JC, Argilés JM, Condom E, Felipe A. Recent Pat Anticancer Drug Discov. 2007; 2(3):212-23.

 

Kv1.3/Kv1.5 heteromeric channels compromise pharmacological responses in macrophages. Villalonga N, Escalada A, Vicente R, Sánchez-Tilló E, Celada A, Solsona C, Felipe A. Biochem Biophys Res Commun. 2007; 352(4):913-8.

 

Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages. Vicente R, Escalada A, Villalonga N, Texidó L, Roura-Ferrer M, Martín-Satué M, López-Iglesias C, Soler C, Solsona C, Tamkun MM, Felipe A. J Biol Chem. 2006; 281(49):37675-85.

 

Potassium channels: new targets in cancer therapy. Felipe A, Vicente R, Villalonga N, Roura-Ferrer M, Martínez-Mármol R, Solé L, Ferreres JC, Condom E. Cancer Detect Prev. 2006; 30(4):375-85.

 

Pattern of Kvß subunit expression in macrophages depends upon proliferation and the mode of activation. Vicente R, Escalada A, Soler C, Grande M, Celada A, Tamkun MM, Solsona C, Felipe A. J Immunol. 2005; 174(8):4736-44.

 

KCNQ1/KCNE1 channels during germ-cell differentiation in the rat: expression associated with testis pathologies. Tsevi I, Vicente R, Grande M, López-Iglesias C, Figueras A, Capellà G, Condom E, Felipe A. J Cell Physiol. 2005;202(2):400-10.

 

The systemic inflammatory response is involved in the regulation of K+ channel expression in brain via TNF-alpha-dependent and -independent pathways. Vicente R, Coma M, Busquets S, Moore-Carrasco R, López-Soriano FJ, Argilés JM, Felipe A. FEBS Lett. 2004;572(1-3):189-94.

 

Differential voltage-dependent K+ channel responses during proliferation and activation in macrophages. Vicente R, Escalada A, Coma M, Fuster G, Sánchez-Tilló E, López-Iglesias C, Soler C, Solsona C, Celada A, Felipe A. J Biol Chem. 2003; 278(47):46307-20.

 

Voltage-dependent K+ channel beta subunits in muscle: differential regulation during postnatal development and myogenesis. Grande M, Suàrez E, Vicente R, Cantó C, Coma M, Tamkun MM, Zorzano A, Gumà A, Felipe A. J Cell Physiol. 2003; 195(2):187-93.

 

Impaired voltage-gated K+ channel expression in brain during experimental cancer cachexia. Coma M, Vicente R, Busquets S, Carbó N, Tamkun MM, López-Soriano FJ, Argilés JM, Felipe A. FEBS Lett. 2003; 536(1-3):45-50.

 

Different Kv2.1/Kv9.3 heteromer expression during brain and lung post-natal development in the rat. Coma M, Vicente R, Tsevi I, Grande M, Tamkun MM, Felipe A. J Physiol Biochem. 2002; 58(4):195-203.

 

One-step reverse transcription polymerase chain reaction for semiquantitative analysis of mRNA expression. Fuster G, Vicente R, Coma M, Grande M, Felipe A. Methods Find Exp Clin Pharmacol. 2002; 24(5):253-9.

 

Oxygen sensitivity of cloned voltage-gated K+ channels expressed in the pulmonary vasculature. Hulme JT, Coppock EA, Felipe A, Martens JR, Tamkun MM. Circ Res. 1999; 85(6):489-97.

 

Primary structure and differential expression during development and pregnancy of a novel voltage-gated sodium channel in the mouse. Felipe A, Knittle TJ, Doyle KL, Tamkun MM. J Biol Chem. 1994; 269(48):30125-31.

 

K+ currents and K+ channel mRNA in cultured atrial cardiac myocytes (AT-1 cells). Yang T, Wathen MS, Felipe A, Tamkun MM, Snyders DJ, Roden DM. Circ Res. 1994; 75(5):870-8.

 

Differential expression of Isk mRNAs in mouse tissue during development and pregnancy. Felipe A, Knittle TJ, Doyle KL, Snyders DJ, Tamkun MM. Am J Physiol. 1994; 267(3 Pt 1):C700-5.

 

Influence of cloned voltage-gated K+ channel expression on alanine transport, Rb+ uptake, and cell volume. Felipe A, Snyders DJ, Deal KK, Tamkun MM. Am J Physiol. 1993; 265(5 Pt 1):C1230-8.



 

Collaborations:

   We are proud to collaborate with a number of outstanding especialist
   

MOLECULAR BIOLOGY AND STRUCTURE-FUNCTION RELATIONSHIP

-          Dr. Michael M. Tamkun. Department of Physiology, Colorado State University, USA . Dr. Michael M. Tamkun. Department of Physiology, Colorado State University, USA.

      -     Dr. Alexander Sorkin. Department of Pharmacology, University of Colorado, USA.

       -        Dr. Concepció Soler. Dept. of Pathology and Experimental Therapeutics. Inmunology, Campus de Bellvitge. Universidad de Barcelona.

ELECTROPHYSIOLOGY AND PHARMACOLOGY

-          Dr. Carles Solsona, Departamento de Patología y Terapéutica Experimental, Campus de Bellvitge.  Universidad de Barcelona.

-          Dr. Carmen Valenzuela, Instituto de Investigaciones Biomédicas “Alberto Sols”. UAM/CSIC, Madrid

      -          Dr. Álvaro Villarroel, Unidad de Biofísica, UPV/CSIC, Bilbao

PATHOLOGICAL ANATOMY

        -    Dr. Enric Condom. Dept. of Pathology and Experimental Therapeutics. Pathology. Hospital Universitario de Bellvitge, Universidad de Barcelona

         -   Dr. Joan Carles Ferreres Dept. of Pathologycal Anatomy. Hospital Universitario de Vall d'Hebron, Universidad Autónoma de Barcelona

 




last update March 2011